D-схемы (непрерывно-детерминированные)

особенностью непрерывно-детерминированного подхода является применение в качестве математических моделей дифференциальные уравнений. Дифференциальными уравнениями называются такие уравнения, в которых неизвестными являются функции одной или нескольких переменных, причем в уравнение входят не только функции, но и их производные различных порядков. Если неизвестные — функции многих переменных, то уравнения называются уравнениями в частных производных, в противном случае при рассмотрении функции только одной независимой переменной уравнения называются обыкновенными дифференциальными уравнениями.

Использование D-схем позволяет формализо­вать процесс функционирования непрерывно-детерминированных систем S и оценить их основные характеристики, применяя анали­тический или имитационный подход, реализованный в виде соответ­ствующего языка для моделирования непрерывных систем или ис­пользующий аналоговые и гибридные средства вычислительной техники.

Наиболее важно для системотехники приложение D-схем в качестве математического аппарата в теории автоматического управления.

 

F-схемы (дискретно-детерминированные т.е. конечные автоматы)

дискретно-детерминированный подход характерен тем, что в качестве математического аппарата на этапе формализации процесса функционирования систем используется математического аппарата математический аппарат теории автоматов. Теория автоматов — это раздел теоретической кибернетики, в котором изучаются математические модели — автоматы. На основе этой теории система представляется в виде автомата, перерабатывающего дискретную информацию и меняющего свои внутренние состояния лишь в допустимые моменты времени. Понятие F-автомата в дискретно-детерминированном подходе к исследованию на моделях свойств объектов является математической абстракцией, удобной для описания широкого класса процессов функционирования реальных объектов в автоматизированных системах обработки информации и управления. В качестве таких объектов в первую очередь следует назвать элементы и узлы ЭВМ, устройства контроля, регулирования и управления, системы временной и пространственной коммутации в технике обмена информацией и т. д. Для всех перечисленных объектов характерно наличие дискретных состояний и дискретный характер работы во времени, т. е. их описание с помощью F-схем является эффективным.

 

P-схемы(дискретно-стохастические т.е. вероятностные автоматы)

Применение схем вероятностных автоматов (Р - схем) имеет важное значение для разработки методов проектирования дискретных систем, проявляющих статистически закономерное случайное поведение, для выяснения алгоритмических возможностей таких систем и обоснования границ целесообразности их использования, а также для решения задач синтеза по выбранному критерию дискретных стохастических систем, удовлетворяющих заданным ограничениям.

Р-автоматы могут использоваться как генераторы марковских последовательностей, которые необходимы при построении и реализации процессов функционирования систем S или воздействий внешней среды Е.

Для оценки различных характеристик исследуемых систем, представляемых в виде Р-схем, кроме случая аналитических моделей можно применять и имитационные модели, реализуемые, например, методом статистического моделирования.

 

Q-схемы (Непрерывно-стохастические модели)

При непрерывно-стохастическом подходе в качестве типовых математических схем применяется система массового обслуживания (англ. queueing system), которые будем называть Q-схемами. Системы массового обслуживания представляют собой класс математических схем, разработанных в теории массового обслуживания и различных приложениях для формализации процессов функционирования систем, которые по своей сути являются процессами обслуживания.

В качестве процесса обслуживания могут быть представлены различные по своей физической природе процессы функционирования экономических, производственных, технических и других систем, например потоки поставок продукции некоторому предприятию, потоки деталей и комплектующих изделий на сборочном конвейере цеха, заявки на обработку информации ЭВМ от удаленных терминалов и т. д.

При этом характерным для работы таких объектов является случайное появление заявок (требований) на обслуживание и завершение обслуживания в случайные моменты времени, т. е. стохастический характер процесса их функционирования.

Математическое обеспечение и ресурсные возможности современных ЭВМ позволя­ют достаточно эффективно провести моделирование различных си­стем, формализуемых в виде Q-схем, используя либо пакеты при­кладных программ, созданные на базе алгоритмических языков общего назначения, либо специализированные языки имитацион­ного моделирования

 

N-схемы (Сетевые модели)

В практике моделирования объектов часто приходится решать задачи, связанные с формализованным описанием и анализом причинно-следственных связей в сложных системах, где одновременно параллельно протекает несколько процессов. Самым распространенным в настоящее время формализмом, описывающим структуру и взаимодействие параллельных систем и процессов, являются сети Петри (англ. Petri Nets), предложенные К. Петри.

Теория сетей Петри развивается в нескольких направлениях:

  1. разработка математических основ,
  2. структурная теория сетей,
  3. 3.     различные приложения (параллельное программирование, дискретные динамические системы и т. д.).

Типовые N-схемы на основе обычных размеченных сетей Петри пригодны для описания в моделируемой системе S событий произвольной длительности. В этом случае модель, построенная с использованием таких N-схем, отражает только порядок наступления событий в исследуемой системе S. Для отражения временных параметров процесса функционирования моделируемой системы S на базе N-схем используется расширение аппарата сетей Петри: временные сети, E-сети.

A-схемы (Комбинированные модели)

Этот подход позволяет описывать поведение непрерывных и дискретных, детерминированных и стохастических систем, т. е. по сравнению с рассмотренными является обобщенным (универсальным) и базируется на понятии агрегативной системы (от англ. aggregate system), представляющей собой формальную схему общего вида, которую будем называть А-схемой. Такая схема должна одновременно выполнять несколько функций:

1.  являться адекватным математическим описанием системы S;

2.  служить основой для построения алгоритмов и программ при машинной реализации модели М;

3.  позволять в упрощенном варианте (для частных случаев) проводить аналитические исследования.

Применение агрегативного подхода при модели­ровании систем дает ряд преимуществ по сравнению с другими, менее универ­сальными подходами. Так, агрегативный подход в си­лу модульной структуры модели и дискретного ха­рактера обмена сигналами дает возможность исполь­зовать внешнюю память ЭВМ для хранения сведе­ний о моделируемых объ­ектах, что в значительной степени снижает ограниче­ния по сложности, возника­ющие при попытке пред­ставить процесс функцио­нирования моделируемой системы S в целом как по­следовательность взаимо­связанных системных со­бытий для записи его в виде моделирующего алгоритма или на языке имитационного моде­лирования.

 

© gosy-asoi2012

Бесплатный хостинг uCoz